metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,3-diaminopyridinium) bis(μ -pyridine-2,6-dicarboxylato)- κ^4O^2 ,N, O^6 : O^6 ; κ^4O^2 : O^2 ,N, O^6 -bis[aqua-(pyridine-2,6-dicarboxylato- κ^3O^2 ,N, O^6)bismuthate(III)] tetrahydrate

Hossein Aghabozorg,^a* Shokoofeh Kazemi,^a Ali Akbar Agah,^b Masoud Mirzaei^c and Behrouz Notash^d

^aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, ^bFaculty of Chemistry, Tarbiat Moallem University, 15614 Tehran, Iran, ^cDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and ^dDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran Correspondence e-mail: haghabozorg@yahoo.com

Correspondence e-mail: haghabozorg@yanoo.com

Received 9 February 2011; accepted 15 February 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.012 Å; R factor = 0.057; wR factor = 0.154; data-to-parameter ratio = 17.1.

In the centrosymmetric dinuclear complex anion of the title compound, $(C_5H_8N_3)_2[Bi_2(C_7H_3NO_4)_4(H_2O)_2]\cdot 4H_2O$, the Bi^{III} atom is eight-coordinated in an N₂O₆ environment and has a distorted bicapped trigonal–prismatic coordination environment. Extensive intermolecular O–H···O, N–H···O and weak C–H···O hydrogen bonds lead to the stability of the crystal structure. Interactions between one C–H group of the 2,3-diaminopyridinium [(2,3-dapyH)⁺] cation and the aromatic ring of the pyridine-2,6-dicarboxylate (pydc) ligand (C–H···centroid distance = 2.78 Å) and π - π interactions between the (2,3-dapyH)⁺ cation and the pydc ligand [centroid–centroid distances = 3.489 (5) and 3.694 (5) Å] are observed.

Related literature

For related structures, see: Aghabozorg et al. (2008, 2010); Sheshmani et al. (2005).

Experimental

Crystal data

(C₅H₈N₃)₂[Bi₂(C₇H₃NO₄)₄- $\beta = 91.38 \ (3)^{\circ}$ $(H_{2}O)_{2}].4H_{2}O$ $\gamma = 90.47 (3)^{\circ}$ $M_r = 1406.76$ V = 1107.7 (4) Å³ Triclinic, $P\overline{1}$ Z = 1a = 9.3462 (19) ÅMo $K\alpha$ radiation b = 10.726 (2) Å $\mu = 8.03 \text{ mm}^{-1}$ c = 11.098 (2) Å T = 298 K $\alpha = 95.13(3)^{\circ}$ $0.33 \times 0.27 \times 0.23 \text{ mm}$

Data collection

Stoe IPDS-2 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) $T_{min} = 0.083, T_{max} = 0.156$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.154$ S = 1.055940 reflections 347 parameters 9 restraints H atoms treated by a mixture of independent and constrained refinement

12406 measured reflections

5940 independent reflections

5539 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} \Delta \rho_{\rm max} = 2.98 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -2.93 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

 $R_{\rm int} = 0.113$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdotsO11^{i}$	0.87 (14)	2.02 (14)	2.797 (10)	148 (12)
$N4 - H4A \cdots O2^{ii}$	0.86	2.11	2.924 (9)	158
$N4 - H4B \cdots O6^{i}$	0.86	1.97	2.830 (10)	178
$N5 - H5A \cdots O3^{iii}$	0.86	2.53	3.216 (10)	138
$N5 - H5B \cdot \cdot \cdot O6^{i}$	0.86	2.11	2.972 (10)	176
$O9-H9A\cdotsO8^{iv}$	0.81 (7)	2.07 (12)	2.746 (10)	141 (15)
$O9 - H9B \cdots O11^{v}$	0.84 (8)	1.99 (10)	2.771 (11)	155 (15)
$O10-H10A\cdots O5$	0.94 (8)	1.96 (8)	2.862 (9)	160 (11)
$O10-H10B\cdots O7^{vi}$	0.80 (8)	2.21 (8)	2.972 (10)	160 (13)
$O11 - H11A \cdots O4^{iii}$	0.89 (8)	2.01 (13)	2.717 (11)	136 (14)
$O11 - H11B \cdots O10^{vii}$	0.92 (9)	1.96 (9)	2.836 (12)	158 (13)
C11−H11···O8 ^{viii}	0.93	2.26	3.050 (10)	142

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 2; (v) x - 1, y - 1, z; (vi) x + 1, y, z; (vii) x, y + 1, z; (viii) -x, -y + 1, -z + 2.

Data collection: *X-AREA* (Stoe & Cie, 2005); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2406).

References

Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.

Aghabozorg, H., Moteieyan, E., Salimi, A. R., Mirzaei, M., Manteghi, F., Shokrollahi, A., Derki, S., Ghadermazi, M., Sheshmani, S. & Eshtiagh-Hosseini, H. (2010). *Polyhedron*, **29**, 1453–1464.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheshmani, S., Kheirollahi, P. D., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Shamsipur, M., Ramezanipour, F. & Moghimi, A. (2005). Z. Anorg. Allg. Chem. 631, 3058–3065.
- Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2011). E67, m360-m361 [doi:10.1107/S1600536811005629]

Bis(2,3-diaminopyridinium) bis(μ -pyridine-2,6-dicarboxylato)- $\kappa^4 O^2$, N, O^6 : O^6 ; $\kappa^4 O^2$: O^2 , N, O^6 -bis[aqua(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O^6) bismuthate(III)] tetrahydrate

H. Aghabozorg, S. Kazemi, A. A. Agah, M. Mirzaei and B. Notash

Comment

Pyridine-2,6-dicarboxylic acid (pydcH₂) can form various complexes containing transition and main metals (Aghabozorg *et al.*, 2008). There are complexes in which pydc acts as a bridging ligand between two metal atoms (Aghabozorg *et al.*, 2010; Sheshmani *et al.*, 2005).

Herein, we report the crystal structure of the title compund as another example of bismuth(III) coordination compound, which bears heterocyclic 2,3-diaminopyridine (2,3-dapy) and pydcH₂ ligands. The molecular structure of the title compound is shown in Fig. 1. The centrosymmetric binuclear unit consists of two Bi^{III} atoms, four (pydc)²⁻ ligands, two coordinated water molecules. Two pydc ligands act as tridentate ligands with an N atom of the pyridine ring and two O atoms of the dicarboxylate groups acting as donors. One of the dicarboxylate O atoms for the other two pydc ligands plays a bridging role between two Bi atoms. The structure also contains two (2,3-dapyH)⁺ cations and four uncoordinated water molecules. The Bi^{III} atom is eight-coordinated in an N₂O₆ environment and has a distorted bicapped trigonal-prismatic geometry, as it is shown in Fig. 2. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 3, Table 1). There are also π - π interactions between the (2,3-dapyH)⁺ rings and between the (2,3-dapyH)⁺ and pydc rings (Fig. 4), with centroid–centroid distances of 3.489 (5) and 3.694 (5) Å, respectively. Furthermore, there is C—H··· π interacton between C—H group of the (2,3-dapyH)⁺ cation and pydc ligand, with an C—H···centroid distance of 2.78 Å (Fig. 5).

Experimental

An aqueous solution of $Bi(NO_3)_3$ (1 mmol), $pydcH_2$ (3 mmol) and 2,3-dapy (1 mmol) was refluxed for about 30 min in a 1:3:1 molar ratio. Brown crystals of the title compound were obtained from the solution by slow evaporation of the solvent within two weeks at room temperature.

Refinement

H atoms attached to pyridine N and water O atoms were found in a difference Fourier map and refined with $U_{iso}(H) = 1.0-1.5U_{eq}(N,O)$. H atoms of the water molecules, H9A, H9B, H10A, H10B, H11A, H11B were refined with distance restraints of O—H = 0.81 (7), 0.84 (8), 0.94 (8), 0.80 (8), 0.89 (8) and 0.92 (9) Å and H…H distance restraints of 1.45 (4) Å for H10A…H10B and 1.40 (4) Å for H11A…H11B. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found at 0.83 Å from Bi1 atom and the deepest hole at 0.74 Å from Bi1 atom.

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x+1, -y, -z+2.]

Fig. 2. The coordination environment of the Bi^{III} atom, showing a distorted bicapped trigonalprismatic geometry. [Symmetry code: (i) -x+1, -y, -z+2.]

Fig. 3. A view of the crystal packing, showing O—H…O, N—H…O and weak C—H…O hydrogen bonds (dashed lines) in the title compound.

Fig. 4. π - π stacking interactions between the aromatic rings of the (2,3-dapyH)⁺ cation and pydc ligand.

Fig. 5. C—H··· π interaction between C—H group of the (2,3-dapyH)⁺ cation and the aromatic ring of the pydc ligand.

Bis(2,3-diaminopyridinium) bis(μ -pyridine-2,6-dicarboxylato)- $\kappa^4 O^2$, N, O^6 : O^6 ; $\kappa^4 O^2$: O^2 , N, O^6 -bis[aqua(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, N, O^6) bismuthate(III)] tetrahydrate

Crystal data

(C5H8N3)2[Bi2(C7H3NO4)4(H2O)2]·4H2O Z = 1 $M_r = 1406.76$ F(000) = 680Triclinic, PT $D_{\rm x} = 2.109 {\rm Mg m}^{-3}$ Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71073$ Å a = 9.3462 (19) Å Cell parameters from 5940 reflections $\theta = 2.2 - 29.2^{\circ}$ *b* = 10.726 (2) Å c = 11.098 (2) Å $\mu = 8.03 \text{ mm}^{-1}$ $\alpha = 95.13 (3)^{\circ}$ T = 298 K $\beta = 91.38 (3)^{\circ}$ Prism, brown $\gamma = 90.47 (3)^{\circ}$ $0.33\times0.27\times0.23~mm$ $V = 1107.7 (4) \text{ Å}^3$

Data collection

Stoe IPDS-2 diffractometer	5940 independent reflections
Radiation source: fine-focus sealed tube	5539 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.113$
ω scans	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: numerical (<i>X-SHAPE</i> and <i>X-RED32</i> ; Stoe & Cie, 2005)	$h = -12 \rightarrow 12$
$T_{\min} = 0.083, T_{\max} = 0.156$	$k = -14 \rightarrow 14$
12406 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.154$	$w = 1/[\sigma^2(F_o^2) + (0.1042P)^2 + 3.0215P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
5940 reflections	$\Delta \rho_{\text{max}} = 2.98 \text{ e } \text{\AA}^{-3}$
347 parameters	$\Delta \rho_{\rm min} = -2.93 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0047 (13)

Fractional atomic coordinates a	und isotropic or	aquivalant isotropic	displacement parameters (λ^2)	
Fractional atomic coordinates a	ina isoiropic or	equivalent isotropic	aisplacement parameters (A)	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O10	0.8002 (8)	0.0220 (8)	0.8803 (9)	0.0534 (19)
08	-0.0239 (8)	0.3014 (6)	1.0095 (8)	0.056 (2)
011	0.9124 (8)	0.8479 (8)	0.7003 (7)	0.0502 (17)
O6	0.6729 (7)	0.3001 (6)	0.7953 (8)	0.0494 (17)
Bi1	0.32379 (2)	0.045644 (19)	0.88303 (2)	0.02387 (13)
N1	0.4091 (7)	-0.0927 (6)	0.7035 (5)	0.0265 (11)
C5	0.3481 (8)	-0.0744 (7)	0.5968 (7)	0.0297 (14)
C1	0.5057 (7)	-0.1819 (6)	0.7123 (6)	0.0247 (12)
C3	0.4867 (12)	-0.2374 (10)	0.4998 (8)	0.047 (2)
Н3	0.5131	-0.2871	0.4312	0.056*
C7	0.2415 (9)	0.0299 (7)	0.5988 (8)	0.0359 (16)
C2	0.5469 (10)	-0.2566 (9)	0.6098 (8)	0.0426 (19)
H2	0.6147	-0.3188	0.6163	0.051*
C4	0.3855 (10)	-0.1434 (9)	0.4899 (8)	0.0388 (17)
H4	0.3450	-0.1277	0.4155	0.047*
N4	1.1655 (8)	0.4867 (7)	0.2534 (8)	0.0436 (18)
H4A	1.1986	0.4137	0.2319	0.052*
H4B	1.2133	0.5526	0.2398	0.052*
C15	1.0421 (8)	0.4974 (7)	0.3068 (7)	0.0300 (14)
C16	0.9763 (9)	0.6147 (8)	0.3425 (8)	0.0333 (15)
N3	0.9707 (9)	0.3919 (7)	0.3263 (7)	0.0383 (15)
N5	1.0463 (9)	0.7230 (6)	0.3244 (9)	0.0462 (19)
H5A	1.0086	0.7940	0.3469	0.055*
H5B	1.1281	0.7205	0.2904	0.055*
C17	0.8460 (10)	0.6133 (9)	0.3960 (10)	0.043 (2)
H17	0.8021	0.6885	0.4204	0.051*
C19	0.8402 (11)	0.3898 (9)	0.3806 (9)	0.046 (2)
H19	0.7959	0.3144	0.3938	0.055*
C18	0.7782 (10)	0.5004 (11)	0.4144 (10)	0.048 (2)
H18	0.6892	0.5012	0.4502	0.057*
03	0.2133 (7)	0.0852 (6)	0.7009 (6)	0.0381 (13)
07	0.0896 (6)	0.1326 (5)	0.9346 (6)	0.0340 (12)
05	0.5370 (6)	0.1332 (5)	0.8106 (6)	0.0324 (11)
N2	0.3143 (7)	0.2700 (6)	0.8827 (6)	0.0262 (11)
C8	0.4311 (8)	0.3335 (7)	0.8530 (7)	0.0283 (13)
04	0.1860 (11)	0.0529 (9)	0.5024 (7)	0.066 (2)
C14	0.0788 (9)	0.2486 (7)	0.9591 (8)	0.0331 (15)
C13	0.5562 (8)	0.2518 (7)	0.8158 (7)	0.0290 (14)
C12	0.1996 (8)	0.3318 (7)	0.9215 (7)	0.0294 (14)
С9	0.4360 (8)	0.4623 (7)	0.8582 (8)	0.0321 (15)
Н9	0.5173	0.5045	0.8362	0.039*
C11	0.1952 (8)	0.4614 (7)	0.9293 (8)	0.0324 (15)
H11	0.1135	0.5036	0.9554	0.039*
C10	0.3145 (9)	0.5268 (7)	0.8975 (9)	0.0358 (17)
H10	0.3137	0.6138	0.9023	0.043*

01	0.5240 (6)	-0.1236 (5)	0.9223 (5)	0.0290 (10)
O2	0.6605 (9)	-0.2791 (7)	0.8471 (6)	0.0489 (17)
C6	0.5695 (8)	-0.1989 (7)	0.8366 (7)	0.0276 (13)
O9	0.1606 (8)	-0.1496 (7)	0.8422 (7)	0.0455 (15)
H10B	0.867 (9)	0.064 (12)	0.906 (13)	0.055*
H11A	0.851 (13)	0.845 (14)	0.638 (9)	0.068*
H11B	0.860 (15)	0.908 (13)	0.742 (11)	0.068*
H9A	0.143 (14)	-0.171 (15)	0.909 (8)	0.068*
H9B	0.090 (13)	-0.126 (14)	0.802 (10)	0.068*
H10A	0.717 (9)	0.070 (11)	0.875 (12)	0.055*
H3A	1.007 (14)	0.325 (13)	0.289 (12)	0.055*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O10	0.036 (3)	0.043 (3)	0.081 (6)	0.007 (3)	-0.001 (3)	0.005 (4)
08	0.052 (4)	0.029 (3)	0.090 (6)	0.012 (3)	0.045 (4)	0.005 (3)
011	0.049 (4)	0.054 (4)	0.049 (4)	0.022 (3)	-0.006 (3)	0.011 (3)
O6	0.034 (3)	0.034 (3)	0.080 (5)	-0.004 (2)	0.025 (3)	0.001 (3)
Bi1	0.02420 (17)	0.01863 (16)	0.02853 (18)	0.00371 (9)	0.00376 (9)	-0.00045 (9)
N1	0.030 (3)	0.026 (3)	0.024 (3)	0.004 (2)	0.004 (2)	0.000 (2)
C5	0.032 (3)	0.025 (3)	0.032 (4)	0.000 (3)	0.003 (3)	0.000 (3)
C1	0.025 (3)	0.022 (3)	0.026 (3)	0.002 (2)	0.003 (2)	-0.004 (2)
C3	0.060 (6)	0.049 (5)	0.030 (4)	0.014 (4)	0.012 (4)	-0.010 (4)
C7	0.039 (4)	0.028 (3)	0.042 (4)	0.006 (3)	0.004 (3)	0.006 (3)
C2	0.041 (4)	0.046 (5)	0.037 (4)	0.011 (4)	0.006 (3)	-0.015 (4)
C4	0.045 (4)	0.043 (4)	0.027 (4)	0.004 (3)	0.006 (3)	-0.003 (3)
N4	0.037 (4)	0.030 (3)	0.063 (5)	0.005 (3)	0.019 (3)	-0.004 (3)
C15	0.035 (4)	0.030 (3)	0.025 (3)	0.000 (3)	-0.001 (3)	0.002 (3)
C16	0.032 (4)	0.029 (3)	0.039 (4)	0.000 (3)	0.005 (3)	0.003 (3)
N3	0.045 (4)	0.027 (3)	0.043 (4)	-0.001 (3)	0.010 (3)	-0.002 (3)
N5	0.051 (4)	0.019 (3)	0.069 (5)	0.007 (3)	0.024 (4)	0.002 (3)
C17	0.037 (4)	0.036 (4)	0.055 (6)	0.012 (3)	0.013 (4)	0.002 (4)
C19	0.053 (5)	0.041 (4)	0.044 (5)	-0.009 (4)	0.013 (4)	0.003 (4)
C18	0.033 (4)	0.057 (6)	0.052 (5)	-0.011 (4)	0.015 (4)	-0.008 (4)
03	0.044 (3)	0.034 (3)	0.036 (3)	0.018 (2)	-0.007 (2)	0.001 (2)
07	0.029 (2)	0.024 (2)	0.048 (3)	-0.0006 (19)	0.007 (2)	0.004 (2)
O5	0.031 (3)	0.024 (2)	0.042 (3)	0.0096 (19)	0.014 (2)	0.002 (2)
N2	0.027 (3)	0.025 (3)	0.026 (3)	0.005 (2)	0.006 (2)	-0.002 (2)
C8	0.033 (3)	0.022 (3)	0.029 (3)	0.002 (2)	0.006 (3)	0.001 (2)
O4	0.082 (6)	0.073 (5)	0.042 (4)	0.035 (5)	-0.015 (4)	0.003 (4)
C14	0.033 (4)	0.024 (3)	0.043 (4)	0.005 (3)	0.008 (3)	0.008 (3)
C13	0.027 (3)	0.027 (3)	0.032 (3)	0.004 (2)	0.008 (3)	-0.001 (3)
C12	0.028 (3)	0.025 (3)	0.035 (4)	0.002 (2)	0.005 (3)	-0.003 (3)
C9	0.026 (3)	0.025 (3)	0.046 (4)	0.003 (2)	0.008 (3)	0.003 (3)
C11	0.028 (3)	0.026 (3)	0.043 (4)	0.006 (3)	0.007 (3)	-0.001 (3)
C10	0.036 (4)	0.023 (3)	0.048 (5)	0.007 (3)	0.006 (3)	0.000 (3)
01	0.030 (2)	0.032 (2)	0.023 (2)	0.007 (2)	-0.0015 (19)	-0.0062 (19)

supplementary materials

O2	0.067(4)	0.040 (3)	0.039(3)	0.029 (3)	-0.002(3)	-0.002(3)
0	0.027 (3)	0.020 (3)	0.029 (3)	0.004 (2)	0.000 (3)	-0.002 (3)
09	0.045 (3)	0.041 (3)	0.049 (4)	-0.012 (3)	0.010 (3)	-0.005 (3)
Geometric paran	neters (Å, °)					
O10—H10B		0.80 (8)	C15-	—C16	1.4	433 (11)
O10—H10A		0.94 (8)	C16	—N5	1.	362 (11)
O8—C14		1.239 (10)	C16	—C17	1.	368 (12)
O11—H11A		0.89 (8)	N3-	C19	1.	374 (12)
O11—H11B		0.92 (9)	N3-	-H3A	0.	87 (14)
O6—C13		1.238 (9)	N5-	-H5A	0.1	8600
Bi1—O3		2.323 (6)	N5-	-H5B	0.1	8600
Bi1—O5		2.384 (6)	C17-	—C18	1.	396 (15)
Bi1—N2		2.409 (6)	C17-	—H17	0.	9300
Bi1—O7		2.447 (6)	C19-	—C18	1.	351 (15)
Bi1—N1		2.525 (6)	C19-	—Н19	0.	9300
Bi1—09		2.581 (7)	C18-	—H18	0.	9300
Bi1—O1 ⁱ		2.627 (5)	07–	C14	1.	255 (9)
Bi1—O1		2.673 (5)	O5–	C13	1.	279 (9)
N1-C1		1.329 (9)	N2-	C12	1.	325 (9)
N1—C5		1.333 (10)	N2-	C8	1.	346 (9)
C5—C4		1.394 (11)	C8–	-С9	1.	377 (10)
С5—С7		1.504 (11)	C8–	C13	1.	510 (10)
C1—C2		1.395 (10)	C14	—C12	1.	522 (11)
C1—C6		1.516 (10)	C12-	—C11	1.	386 (10)
C3—C2		1.364 (14)	С9—	-C10	1.	394 (10)
C3—C4		1.398 (14)	С9—	-H9	0.	9300
С3—Н3		0.9300	C11-	—C10	1.	381 (12)
С7—О4		1.224 (12)	C11-	—H11	0.	9300
С7—ОЗ		1.266 (11)	C10	—H10	0.	9300
С2—Н2		0.9300	O1–	C6	1.1	275 (9)
C4—H4		0.9300	O1–	–Bil ⁱ	2.	627 (5)
N4—C15		1.310(11)	O2–	C6	1.1	225 (10)
N4—H4A		0.8600	O9–	-H9A	0.	81 (7)
N4—H4B		0.8600	O9–	-H9B	0.	84 (8)
C15—N3		1.346 (10)				
H10B-010-H1	0A	112 (9)	N3-	C15C16	11	7.8 (7)
H11A—O11—H1	1B	91 (8)	N5-	C16C17	12	22.4 (8)
O3—Bi1—O5		87.5 (2)	N5-	C16C15	11	9.2 (7)
O3—Bi1—N2		73.7 (2)	C17-		11	8.4 (8)
O5—Bi1—N2		67.26 (19)	C15-	—N3—C19	12	24.1 (8)
O3—Bi1—O7		74.0 (2)	C15-	—N3—H3A	11	3 (9)
O5—Bi1—O7		133.22 (18)	C19-	—N3—H3A	12	22 (9)
N2—Bi1—O7		66.40 (19)	C16	—N5—H5A	12	20.0
O3—Bi1—N1		66.3 (2)	C16	—N5—H5B	12	20.0
O5—Bi1—N1		70.7 (2)	H5A	MMN5—H5B	12	20.0
N2—Bi1—N1		122.1 (2)	C16	—C17—C18	12	20.9 (8)

O7—Bi1—N1	132.5 (2)	С16—С17—Н17	119.6
O3—Bi1—O9	79.0 (3)	С18—С17—Н17	119.6
O5—Bi1—O9	140.1 (2)	C18—C19—N3	118.1 (9)
N2—Bi1—O9	140.2 (2)	C18—C19—H19	121.0
O7—Bi1—O9	78.7 (2)	N3—C19—H19	121.0
N1—Bi1—O9	69.4 (2)	C19—C18—C17	120.7 (8)
O3—Bi1—O1 ⁱ	150.1 (2)	С19—С18—Н18	119.6
O5—Bi1—O1 ⁱ	74.6 (2)	C17—C18—H18	119.6
N2—Bi1—O1 ⁱ	77.3 (2)	C7—O3—Bi1	124.9 (5)
O7—Bi1—O1 ⁱ	100.97 (19)	C14—O7—Bi1	119.0 (5)
N1—Bi1—O1 ⁱ	126.40 (18)	C13—O5—Bi1	121.0 (4)
O9—Bi1—O1 ⁱ	129.7 (2)	C12—N2—C8	119.8 (6)
O3—Bi1—O1	128.33 (18)	C12—N2—Bi1	120.5 (5)
O5—Bi1—O1	76.04 (18)	C8—N2—Bi1	119.4 (5)
N2—Bi1—O1	136.45 (19)	N2—C8—C9	122.5 (7)
O7—Bi1—O1	147.79 (19)	N2-C8-C13	114.3 (6)
N1—Bi1—O1	61.99 (18)	C9—C8—C13	123.2 (7)
O9—Bi1—O1	83.3 (2)	O8—C14—O7	125.2 (8)
O1 ⁱ —Bi1—O1	70.87 (18)	O8—C14—C12	117.1 (7)
C1—N1—C5	120.5 (6)	O7—C14—C12	117.7 (7)
C1—N1—Bi1	123.4 (5)	O6—C13—O5	122.5 (7)
C5—N1—Bi1	116.0 (5)	O6—C13—C8	120.1 (7)
N1—C5—C4	122.3 (7)	O5—C13—C8	117.4 (6)
N1—C5—C7	115.4 (7)	N2—C12—C11	121.4 (7)
C4—C5—C7	122.3 (8)	N2—C12—C14	114.3 (6)
N1—C1—C2	120.7 (7)	C11—C12—C14	124.3 (7)
N1—C1—C6	117.8 (6)	C8—C9—C10	117.5 (7)
C2—C1—C6	121.5 (7)	С8—С9—Н9	121.3
C2—C3—C4	120.3 (8)	С10—С9—Н9	121.3
С2—С3—Н3	119.8	C10-C11-C12	118.8 (7)
С4—С3—Н3	119.8	C10-C11-H11	120.6
O4—C7—O3	124.9 (8)	C12—C11—H11	120.6
O4—C7—C5	117.8 (8)	C11—C10—C9	119.9 (7)
O3—C7—C5	117.3 (7)	С11—С10—Н10	120.0
C3—C2—C1	119.3 (8)	С9—С10—Н10	120.0
С3—С2—Н2	120.3	C6—O1—Bi1 ⁱ	124.2 (5)
С1—С2—Н2	120.3	C6—O1—Bi1	121.5 (5)
C5—C4—C3	116.9 (8)	Bi1 ⁱ —O1—Bi1	109.13 (18)
С5—С4—Н4	121.6	O2—C6—O1	125.5 (7)
C3—C4—H4	121.6	O2—C6—C1	119.2 (7)
C15—N4—H4A	120.0	O1—C6—C1	115.2 (6)
C15—N4—H4B	120.0	Bi1—O9—H9A	105 (10)
H4A—N4—H4B	120.0	Bi1—O9—H9B	106 (10)
N4—C15—N3	118.1 (8)	Н9А—О9—Н9В	116 (10)
N4—C15—C16	124.0 (7)		. /
O3—Bi1—N1—C1	-178.5 (6)	O1 ⁱ —Bi1—O5—C13	-75.3 (6)
O5—Bi1—N1—C1	85.6 (6)	O1—Bi1—O5—C13	-148.9 (6)

supplementary materials

N^2 —Bi1—N1—C1	1310(5)	03 = Bi1 = N2 = C12	86.6 (6)
07—Bi1—N1—C1	-142.8(5)	05 - Bil - N2 - C12	-179.2(6)
09—Bi1—N1—C1	-91.8 (6)	07—Bi1—N2—C12	7.3 (6)
$O1^{i}$ Bi1 N1 C1	33.0 (6)	N1—Bi1— $N2$ —C12	134.0 (6)
O1 - Bi1 - N1 - C1	16(5)	09 - Bi1 - N2 - C12	38.0 (7)
$O_2 B_1 N_1 C_5$	-0.5(5)	O_1^{i} D_1^{i} N_2^{i} O_1^{i}	-100.8(6)
05 p:1 N1 C5	0.5(5)	OI - BII - N2 - CI2	100.8 (0)
N2 Dil N1 C5	-96.4 (5)	OI = BII = N2 = CI2	-144.4 (5)
N2—B11—N1—C5	-51.0 (6)	03—Bil—N2—C8	-99.3 (6)
0/-Bil-Nl-C5	35.2 (6)	05—Bil—N2—C8	-5.1 (5)
09—B11—N1—C5	86.2 (5)	0/—B11—N2—C8	-1/8.5 (6)
$O1^1$ —Bi1—N1—C5	-149.0 (5)	N1—Bi1—N2—C8	-51.9 (6)
01—Bi1—N1—C5	179.6 (6)	O9—Bi1—N2—C8	-147.8 (5)
C1—N1—C5—C4	-2.4 (11)	O1 ⁱ —Bi1—N2—C8	73.3 (5)
Bi1—N1—C5—C4	179.5 (6)	O1—Bi1—N2—C8	29.8 (7)
C1—N1—C5—C7	-179.6 (7)	C12—N2—C8—C9	-1.7 (12)
Bi1—N1—C5—C7	2.4 (8)	Bi1—N2—C8—C9	-175.9 (6)
C5—N1—C1—C2	1.1 (11)	C12—N2—C8—C13	177.3 (7)
Bi1—N1—C1—C2	179.0 (6)	Bi1—N2—C8—C13	3.1 (9)
C5—N1—C1—C6	-179.2 (6)	Bi1-07-C14-08	-164.6 (8)
Bi1—N1—C1—C6	-1.3 (9)	Bi1-07-C14-C12	16.9 (10)
N1C5C7O4	177.7 (9)	Bi1-05-C13-06	169.5 (7)
C4—C5—C7—O4	0.5 (13)	Bi1-05-C13-C8	-8.4 (10)
N1C5C7O3	-4.0 (11)	N2-C8-C13-O6	-174.6 (8)
C4—C5—C7—O3	178.8 (8)	C9—C8—C13—O6	4.4 (13)
C4—C3—C2—C1	0.4 (16)	N2-C8-C13-O5	3.3 (11)
N1—C1—C2—C3	-0.2 (14)	C9—C8—C13—O5	-177.7 (8)
C6—C1—C2—C3	-179.8 (9)	C8—N2—C12—C11	1.8 (12)
N1—C5—C4—C3	2.6 (13)	Bi1—N2—C12—C11	175.9 (6)
C7—C5—C4—C3	179.5 (9)	C8—N2—C12—C14	-176.5 (7)
C2—C3—C4—C5	-1.5 (15)	Bi1-N2-C12-C14	-2.4 (9)
N4-C15-C16-N5	-2.3 (13)	O8—C14—C12—N2	171.6 (9)
N3-C15-C16-N5	179.7 (9)	O7-C14-C12-N2	-9.8 (11)
N4-C15-C16-C17	179.0 (9)	O8—C14—C12—C11	-6.6 (14)
N3-C15-C16-C17	1.0 (12)	O7—C14—C12—C11	172.0 (8)
N4—C15—N3—C19	-179.6 (9)	N2-C8-C9-C10	0.8 (13)
C16-C15-N3-C19	-1.5 (13)	C13—C8—C9—C10	-178.1 (8)
N5-C16-C17-C18	-179.2 (11)	N2-C12-C11-C10	-1.0 (13)
C15-C16-C17-C18	-0.6 (15)	C14—C12—C11—C10	177.1 (8)
C15—N3—C19—C18	1.4 (15)	C12—C11—C10—C9	0.2 (13)
N3-C19-C18-C17	-0.9 (17)	C8—C9—C10—C11	-0.1 (13)
C16-C17-C18-C19	0.6 (17)	O3—Bi1—O1—C6	-2.0 (7)
O4—C7—O3—Bi1	-178.0 (9)	O5—Bi1—O1—C6	-77.3 (6)
C5—C7—O3—Bi1	3.8 (11)	N2—Bi1—O1—C6	-110.2 (6)
O5—Bi1—O3—C7	68.1 (7)	O7—Bi1—O1—C6	124.4 (6)
N2—Bi1—O3—C7	135.2 (8)	N1—Bi1—O1—C6	-1.9 (5)
O7—Bi1—O3—C7	-155.3 (8)	O9—Bi1—O1—C6	68.3 (6)
N1—Bi1—O3—C7	-1.9 (7)	$O1^{i}$ —Bi1—O1—C6	-155.5 (7)
O9-Bi1-O3-C7	-74 1 (7)		153 5 (2)
07-DII-03-07	/4.1(/)	03—BII—01—BII.	133.3 (2)

O1 ⁱ —Bi1—O3—C7	120.6 (7)		O5—Bi1—O1—Bi1 ⁱ		78.3 (2)
O1—Bi1—O3—C7	-1.8 (8)		N2—Bi1—O1—Bi1 ⁱ		45.4 (4)
O3—Bi1—O7—C14	-91.9 (7)		O7—Bi1—O1—Bi1 ⁱ		-80.0 (4)
O5—Bi1—O7—C14	-21.3 (8)		N1—Bi1—O1—Bi1 ⁱ		153.6 (3)
N2—Bi1—O7—C14	-13.0 (6)		O9—Bi1—O1—Bi1 ⁱ		-136.2 (3)
N1—Bi1—O7—C14	-125.7 (6)		O1 ⁱ —Bi1—O1—Bi1 ⁱ		0.0
O9—Bi1—O7—C14	-173.6 (7)		Bi1 ⁱ —O1—C6—O2		28.4 (11)
O1 ⁱ —Bi1—O7—C14	57.8 (7)		Bi1-01-C6-02		-179.9 (7)
O1—Bi1—O7—C14	129.2 (6)		Bi1 ⁱ -O1-C6-C1		-149.8 (5)
O3—Bi1—O5—C13	80.5 (6)		Bi1-01-C6-C1		2.0 (8)
N2—Bi1—O5—C13	7.2 (6)		N1-C1-C6-02		-178.8 (8)
O7—Bi1—O5—C13	15.4 (7)		C2—C1—C6—O2		0.9 (12)
N1—Bi1—O5—C13	146.3 (7)		N1-C1-C6-01		-0.6 (10)
O9—Bi1—O5—C13	150.0 (6)		C2-C1-C6-01		179.1 (8)
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$.					
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H3A···O11 ⁱⁱ		0.87 (14)	2.02 (14)	2.797 (10)	148 (12)
N4—H4A····O2 ⁱⁱⁱ		0.86	2.11	2.924 (9)	158
N4—H4B····O6 ⁱⁱ		0.86	1.97	2.830 (10)	178

N5—H5B···O6 ⁱⁱ	0.86	2.11	2.972 (10)	176
09—H9A…O8 ^v	0.81 (7)	2.07 (12)	2.746 (10)	141 (15)
09—H9B…O11 ^{vi}	0.84 (8)	1.99 (10)	2.771 (11)	155 (15)
O10—H10A…O5	0.94 (8)	1.96 (8)	2.862 (9)	160 (11)
O10—H10B…O7 ^{vii}	0.80 (8)	2.21 (8)	2.972 (10)	160 (13)
011—H11A…O4 ^{iv}	0.89 (8)	2.01 (13)	2.717 (11)	136 (14)
O11—H11B···O10 ^{viii}	0.92 (9)	1.96 (9)	2.836 (12)	158 (13)
C11—H11…O8 ^{ix}	0.93	2.26	3.050 (10)	142

2.53

3.216 (10)

138

0.86

N5—H5A····O3^{iv}

Symmetry codes: (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*, -*y*, -*z*+2; (vi) *x*-1, *y*-1, *z*; (vii) *x*+1, *y*, *z*; (viii) *x*, *y*+1, *z*; (ix) -*x*, -*y*+1, -*z*+2.

Fig. 2

Fig. 3

